White Paper Draft
The AOP Alliance: Why Did We Get In?

Renaud Pawlak

July 11, 2003

WARNING: This paper is a DRAFT! It
is an attempt to make a first specifica-
tion/guideline /roadmap(?) for the AOP Alliance.
Many ideas here come from the discussion be-
tween the members of the ML, including Cedric
Beust, Rod Johnson, Gregor Kiczales, Bob Lee,
Rickard Oberg, Andrei Popovitchi, Jon Tirsen,
myself, and others. This draft can be discussed,
and I hope it will help to reach a common and
quite precise point of view of what AOP Alliance
is.

Contents
1 AOP Alliance goals 1
1.1 AOP Advantages: The J2EE Case 1
1.2 The Current Brakes To AOP 2
1.3 The AOP Alliance Claim 2
2 Aspect-Oriented Architectures 2
2.1 A Common Architectural Vision 2
2.2 A 3-Layer Typical Architecture 3
2.3 What Shall AOP Alliance Specify Here? . 3
3 AOP Alliance Components 4
3.1 Low-Level Components 4
3.1.1 Reflection 4
3.1.2 Program Instrumentation 4
3.1.3 Interception Frameworks. 4
3.1.4 Metadata Handling 4
3.1.5 Class Loading Frameworks . 4
3.2 High-Level Components 5
321 AOPAPI 5
3.2.2 Configuration APT 5

Introduction

The aim of this document is to present the AOP Alliance
project. Its goals, its philosophy, what answers it should
provide, and what it should not. It is a draft proposal
which has to be further discussed with other members of
the AOP Alliance in order to reach a common view on
what we are doing here. It should also be completed as
soon as an interesting point comes out from the discus-
sions on the list.

This document is a white paper and can be used on
internal purpose by the AOP Alliance members, but also
to provide an insight and an understanding about what
is AOP Alliance for external people.

In section 1, I will try to explain in general terms the
goals of the AOP Alliance. Our motivations comes from
the fact that AOP can improve solutions such as J2EE-
based ones. If we manage to define a normalize set of
APIs, it would be possible to integrate AOP in existing
solutions or to build AOP environments using existing
AOP tools. Section 2 gives an overview of a proposed
architecture and APIs for aspect-oriented environments.
I try to guess what APIs should be specified by the AOP
Alliance. Finally, in section 3, I enter into the details
of the identified components and their roles within AOP
environments.

1 AOP Alliance goals

1.1 AOP Advantages: The J2EE Case

Aspect-Oriented Programming (AOP) is a great way for
designing and programing the applications. It offers a
better solution to many problems than do existing tech-
nologies such as EJB.

J2EE is a typical target environment (but not the only
one) that could benefit from AOP Alliance. Indeed, J2EE
environments partially solve some issues by providing
means to handle technical issues such as persistence or
transactions. However, the J2EE architecture is not flex-
ible enough to easilly add new technical concerns related
to particular needs. Moreover, it would be interesting to
be able to remove one solution when not needed or when
a ligther solution is preferable.

AOQOP provides a generic means to build new technical
concerns (crosscutting concerns) and to plug them within
an application in a flexible and modular way. Applying
some AOP concepts in J2EE can also really simplify its
use. For instance, regular Java objects (POJOs) can be
used in place of EJBs. So, being able to easily apply full
AOP to J2EE will greatly increase the usability of J2EE.
It would also bring much more power to J2EE-compliant
application servers.

2 ASPECT-ORIENTED ARCHITECTURES

1.2 The Current Brakes To AOP

AOQOP is gaining in popularity. However, most of the AOP
tools were not designed in the purpose to be applied in
any environment (mainly because most of the tools where
designed on experimentation purpose). Thus, when try-
ing to use AOP in a specific environment, we can face
some issues because, for instance, the environment al-
ready supports some builtin aspects that may not be
compliant with the AOP tool implementation.

This problem arises because AOP needs to modify the
objects/classes of the application in order to work fine.
This objet-modification logic is implemented by a spe-
cific part of the AOP tool: the weaver. A weaver can
be well-fitted to a given environment but could break
some important system properties in another one. For
instance, an interesting discussion on the AOP Alliance’s
list beetween Gregor and Rickard seemed to show that
Aspectd’s weaver implementation for introductions (spe-
cific weaving operations) was not well fitted in some en-
vironments having some kinds of distribution and persis-
tence cacabilities.

1.3 The AOP Alliance Claim

Most of the people here do not believe in the perfect
system. We think that a system is always suited to a
given problem and environment (it does not necesseraly
fit the other one). This is exactly the case for the AOP
tools that we may use within complex environments such
as J2EE. Depending on the faced problem, it would be
useful to have a specific implementation of AOP.

There are already a lot of specific implementations of
AOP or AQOP-related techniques such as generic prox-
ies, interceptors, or bytecode translators. For instance,
among others:

e Aspectd: an AO source-level (and bytecode-level)
weaver. New Language.

e AspectWerkz: an AO framework (bytecode-level dy-
namic weaver+configuration in XML).

e BCEL: a bytecode translator.

e JAC: an AO middleware (bytecode-level dynamic
weaver+configuration+aspects). Framework.

e Javassist: a bytecode translator with a high-level
APL

e JBoss-AQOP: interception and metadata-based AQO
framework (running on JBoss application sever +
a standalone version).

e JMangler: a bytecode translator with a composition
framework for translations.

e Nanning: an AO weaver (framework).

e Prose: an AQO bytecode-level dynamic weaver
(framework).

To us, these implementations reflect that there is
no good or bad implementations, but implementations
suited to some problems/environments.

So, the AOP Alliance goal is neither to come with a
new AOP model, nor to provide a great AOP implemen-
tation that will work for all the cases or on a given J2EE
application server. The AOP Alliance goal is rather to en-
able all the exisiting implementations to speak the same
core language in order to:

e avoid re-building of existing AOP components by
reusing them,

e simplify the adaptation of existing AOP components
for a given target environment (typically a J2EE en-
vironment),

e simplify the aspects reusing by having a common
root AOP APIL

e simplify the implementation of development tools
that whish to integrate AOP features.

2 Aspect-Oriented Architectures

2.1 A Common Architectural Vision

In sections 1.2 and 1.3, we explain that it is difficult to
agree on a common AOP model and implementation be-
cause it is too tightly linked to the context of use and the
environment (implementation may differ in a pure Java
approach and in a J2EE-compliant approach). However,
we think that it is possible to agree on a common architec-
tural vision for Aspect Oriented Environnments (AOE).

Indeed, when building an Aspect-Oriented Environ-
ment (AOE)!, designers need to define an architecture.
In most of the existing AOEs, the architecture defines and
combines some elementary modules/components/APIs
that implement the basic functions of the system. By
looking at the existing tools, we can identify com-
mon components (i.e. components that provides close
functionalities in the considered architecture, but not
necesseraly using the same implementation techniques).
For instance, JBoss’ weaver uses Javassist to implement
an interception mechanism (which is instrumented at the
client’s side) whilst JAC’s weaver uses BCEL to imple-
ment an interception mechanism (which is instrumented
at the server’s side). Other techniques like intercessing
the JIT compiler can be employed to perform the same
effect. All of them heavily rely on the environment.

In the next section, we will try to extract components
that can be useful to AOEs. These components may be
used to build contextual-dependent AOEs.

!With AOE, we mean any environment that supports AOP in
one way or another. E.g. JBoss AOP is an AOE but any J2EE
application server can be also regarded as a reduced AOE with
buit-in aspects.

2 ASPECT-ORIENTED ARCHITECTURES

———_— — — — — === =

LEVEL 3:
language,
development
environments

Aspect Oriented Program
(base+aspects+(configuration))

LEVEL 2:
AO system
(can be CT or RT)

Configuration model
(high-level API) > 'gtirafion logt P igh-tevel API)

AOP model

Weaving logic

—_—— e e e — -~

LEVEL 1:
low-level components !

Reflection

Program instrumentation

Interception frameworks

to implement weaving :

~ o e e e e e e = =

Class loading frameworks

Figure 1: A three-layer architecture for aspect-oriented environments.

2.2 A 3-Layer Typical Architecture

A typical architecture could be drawn as shown in fig-
ure 1. This simplified diagram contains some components
(boxes) and some core logics (rounded boxes) that can
use (bold arrows) the components’ APIs. It is meant to
run an initial AO program on the top of the figure. Note
that this architecture does not intend to be a reference
architecture but only one possible architecture. Indeed,
several possibilities exist for composing the different core
components of an AQ architecture.
One can split this architecture in three layers:

e a low-level layer (1) that provides basic components
to implement the weaving (the main process of AOP)
on the target platform,

e a high-level layer (2) that provides basic components
for AOP, in its original meaning, plus the logic that
implements the AO semantics (would depend on the
target platform),

e a development-level layer (3) that includes the UI in
its largest sense (can be supported by a language,
can be a modelling tool) and other tools that are
needed to help the developer trusting the AO pro-
grams (such as type-checking, visualization tools, de-
buggers, and so on).

2.3 What Shall AOP Alliance Specify
Here?

As said before, the AOP Alliance goals are not to pro-
vide new models or better implementations of existing

tools. In fact, the AOP Alliance goals are to specify nor-
malized API for the components that are identified in
common Aspect Oriented Environments (AOEs) imple-
mentations. If we manage to do this, it will be possible to
build better AOEs than existing ones by integrating the
components that best fit the context in which we want to
use AQOP. In particular, it should be possible to use the
very best of AOP, even in complex environments such as
J2EE application servers.

So, if we refer to figure 1, the AOP Alliance’s role
should be to define the API of the identified components.
The most important components are the low-level ones
because their implementations will influence the environ-
ment in which the AOE can be used. Some technical
caracteristics may also have deep inpact on the resulting
system properties (e.g. are the aspects can be dynami-
cally woven/unwoven? is the system scalable regarding
distribution? can the system cohabit with built-in as-
pects such as persistence or transactions?). However, the
high-level components are also quite interesting for tools
such as IDE, debuggers, modelling tools, and so on. Hav-
ing a common AOP concepts manipulation API will help
the tools to better support several AOP implementations
in different environments.

The AOP Alliance could provide some reference im-
plementations for some components (by using existing
tools). However, it would be better if existing tools (most
of the tools creators are in the Alliance) provide their own
implementations of the defined APIs. These implemen-
tations will validate the API correctness.

The AOP Alliance will not tackle the weaving logic
and the configuration logic since it really depends on the

3 AOP ALLIANCE COMPONENTS

AOE implementation. However, we should also provide
some reference implementation in order to show how our
API should be used to build AOEs.

Finally, the AOP Alliance will not address the third
layer (development-level). We should let the development
tools implementors use our API when the AOP tools they
integrate implement it.

3 AOP Alliance Components

Let us now dive into the global picture of the core AOP
Alliance components. WARNING: These compo-
nents are a first proposal draft on the APIs the
AOP Alliance sould specify. Some of them may
be removed, and some may be added. Note that
some of them have already begun to be specified
with Java interfaces.

3.1 Low-Level Components

Low-level components are quite important ones because
the entire AOE relies on them for its implementation.
The way these components are implemented will be cru-
tial and may drastically affect the system’s properties
such as performance, scalability, integration capabilities,
or security.

3.1.1 Reflection

The reflection API is very important for any AQOE. In
fact, the weaver needs to introspects the classes of the
base program in order to apply the advices or the intro-
ductions. For instance, if a pointcut tells that all the
methods of a class should be adviced (using some kind of
regular expression or an ALL keyword), then the weaver
will need to use the reflection API to explicitely know the
list of the methods that actually need to be adviced.
When the weaving process is done at runtime, the
SUN’s java.lang.reflect implementation can be sufficient
to build the AOE. However, in most of the existing sys-
tems, the weaving process occurs at the compile-time or
at class load-time. In these cases, a specific implemen-
tation of a reflection API is needed. According to AOP
Alliance, it is quite important to normalize this APT in
order to be able to switch the underlying implementation
depending on the running context of the AOE.

3.1.2 Program Instrumentation

From the weaver’s point of view, if the reflection is the
read access to the woven program, the instrumentation
is the write access 2. However, in AOP, the allowed pro-
gram modifications are a reduced set of modifications.
The allowed modications are incremental regarding the
existing structure of the initial program so that the as-
pects can be correctly composed together. These kinds

2In reflection’s foundations, this operation is called intercession.

of incremental modifications are called instrumentations
because of previous discussions on the list.

There is no standard API for instrumentation. How-
ever, like reflection, instrumentation can happen at run
time, compile time, or load time. Moreover, for each
category, different implementations can be performed de-
pending on the context and the AOE’s environment (for
instance, the instrumentation can be done directly on the
source code or on the bytecode). It is thus important to
us that the instrumentation API is normalized in order
to change the underlying implementation depending on
the AOE requirements.

3.1.3 Interception Frameworks

Another type of base components that can be extremely
useful to build AOEs are the interception frameworks.
With the dynamic proxies, Java provides a standard
API/framework for interception. However, several en-
hancements on transparency, performance, etc, can be
achived by other implementations (most of them use an
instrumentation API). It is thus also interesting to de-
fine a standard interception API/framework with a clear
semantics.

Interception frameworks have many advantages since
they allow to implement very easily the around advices
of the AOP model. Moreover, they can be standalone
and most of the time provide quite clear AOP-like code
despite written in pure Java. For these reasons, several
interception frameworks have been implemented in many
projects and environments (including J2EE application
servers, see JBoss). Hence, the AOP Alliance should
provide an abstract interception framework in order to
standardize this AOP important toolbox.

3.1.4 Metadata Handling

Metadata handling is useful when implementing AOEs,
especially when coupled with an interception framework.
It allows the weaver to extend the classes semantics in
a non-invasive manner. Since most implementations on
metadata allows dynamicity, it can also be used for dy-
namic configuration/reconfiguration of the aspects.
Even if the JDK1.5 will provide a standard imple-
mentation for metadata, it should be useful to provide
a standard API that allows multiple implementations.
These may take into account some environmental speci-
ficity such as distribution, serialization, that may not be
correctly handled by the default implementation.

3.1.5 Class Loading Frameworks

In many AOEs, byte-code level manipulation is required.
It can be used to implement an interception framework,
or to directly implement the weaver’s intrumentation of
the programs. In some cases, this byte-code level ma-
nipulation can be done at class’s load-time because the
AOP instrumentations are quite simple. Thus, most of

3 AOP ALLIANCE COMPONENTS

the AOEs use the flexible class-loading architecture of
Java.

However, several environments also use the class-
loaders to implement their own functionalities. For
instance, distributed environnments may generate the
stubs using specific class loaders. Within these environ-
ments, the AOE’s class-loading mechanism could lead to
system crashes because of class-loaders incompatibilities.

Consequently, we think that it could be important to
normalize a class-loading framework that would be flex-
ible enough to easily enable different class loaders com-
ming from different environment to cooperate in a safe
way.

3.2 High-Level Components

The high-level components are important to normalize if
we want the tools defined in the third layer (development
layer) to provide better support for AOP in general.

3.2.1 AOP API

Explaining the goal of our AOP API can be explained
great by quoting Gregor: ”Clearly we want to do what-
ever we can to avoid needless inconsistency among AOP
tools. It is much too soon to actually standardize, we
still need room for meaningful variance. But needless
variance is clearly worth eliminating.”

So, our AOP model will no be a new model. Tt will
just try to bring together what all the current models
have in common. The AspectJ model is doubtless the
most achieved one and there are already some tools that
support it. So we will probably take a subset of AspectJ
here.

3.2.2 Configuration API

Many aspects can be implemented in a generic fashion.
This means that they implement a logic that is poten-
tially reusable for any program in which you would want
to weave the aspect functions. Most of the time, this
aspect-reusing process implies a parameterization of the
generic aspect (for instance, tell a generic persistence as-
pect which class should be persistent and how). In As-
pectd, this can be done by subclassing abstract aspects.
But it can also be done by using external tools (e.g. pre-
processors). In J2EE environment, the configuration pro-
cess of the built-in aspects (technical concerns of the EJB
container) is parameterized by XML deployment files. In
JBoss/AOP and other frameworks, the configuration can
also be done using XML files. In JAC, the configuration
can be done in Java programs with the aspect configu-
ration API or by using a specific scripting-like language,
and so on.

It would be great if we could normalize a configuration
API. Tt would make AOEs integration easier for develop-
ment tools. It would also facilitate the reusing of specific
configurations from an AOE to another (e.g. Aspect]J
and JBoss/AOP).

Note that it is maybe unrealistic to make the aspects
portable from an AOE to another because of the poten-
tially important differences. But it seems less unrealistic
to make the aspect configurations portable, which is al-
ready a first step towards AOEs interoperablity.

Conclusion

This paper tries to explain the reasons of the AOP Al-
liance project, and also to specify some goals. I tried to
speak in the name of many people on the list, regarding
what I have understood. It is quite unprecise for the mo-
ment and only draws a global picture. Maybe some of the
people will disagree or will be disapointed. This would
be great if we can have some really good discussion that
we help us to reach a good feeling on what we really want
here.

